

Abstracts

A new extraction method to determine bias-dependent source series resistance in GaAs FET's

Chung-Hwan Kim, Kyung-Sik Yoon, Jeon-Wook Yang, Jin-Hee Lee, Chul-Soon Park, Jae-Jin Lee and Kwang-Eui Pyun. "A new extraction method to determine bias-dependent source series resistance in GaAs FET's." 1998 *Transactions on Microwave Theory and Techniques* 46.9 (Sep. 1998 [T-MTT]): 1242-1250.

A new method is proposed to determine bias-dependent source resistances for GaAs field-effect transistors (FET's). This method, which is a cold-FET measurement technique, utilizes the relations between the real part of the two-port impedances transformed from the measured S-parameters and their algebraic derivatives. It is based on the fact that the algebraic derivatives of the two-port resistances result in the simple form at the normal cold-FET condition. A bias-independent gate resistance is extracted at the pinched-off cold-FET condition to fulfill necessary and sufficient conditions in extraction. The proposed method is a direct measurement because only algebraic calculation is required, and it is general enough to need only one assumption of the laterally symmetric channel-doping profile. The deleterious results of dispersion (frequency dependence) and negative value in source resistances at the pinched-off cold-FET condition are explained by the effects of the leakage current and the on-wafer pad parasitics, respectively. The problem of deviation of α_{21} and α_{12} from 0.5 at the normal cold-FET condition is also resolved by deembedding the on-wafer pad parasitics. This method allows one to extract bias-dependent source resistances for GaAs FET's.

[Return to main document.](#)

Click on title for a complete paper.